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The following topics are covered in this class:

• triangle counting in a random tripartite graph;

• the definition of regular set pairs;

• the triangle counting lemma;

• Szemerédi’s regularity lemma, a brief history, and a very high level proof;

• an application of Szemerédi’s regularity lemma: triangle-freeness testing, and a proof sketch.

1 Randomness and Regularity

Random graphs have many nice properties, and various questions can be asked in a random graph.
For instance, the following question asks for the expected number of triangles in a random tripartite
graph:

Problem 1. How many triangles are in a random tripartite graph with partition classes A,B,C
and density η?

For all u ∈ A, v ∈ B,w ∈ C, let

σu,v,w =

{
1, if u, v, w form a triangle,
0, otherwise.

Then for all u ∈ A, v ∈ B,w ∈ C,

E [σu,v,w] = P [σu,v,w = 1] = η3.

Hence,

E[# triangles] = E

∑
u∈A
v∈B
w∈C

σu,v,w

 = η3|A||B||C|.

Can we make a weaker assumption and still obtain reasonable bounds? In other words, what if
the edges are not completely independent? We introduce the notions of desntity and regularity of
set pairs to describe behaviors like those of a random graph.

Definition 2 (density and regularity of set pairs). Let G = (V,E) be a graph. Let A,B ⊂ V be
such that A∩B = ∅ and |A| > 1, |B| > 1. Let e(A,B) be the number of edges between A and B. Let
the density of (A,B) be defined to be d(A,B) = e(A,B)/(|A||B|). We say that (A,B) is γ-regular
if for all A′ ⊂ A and B′ ⊂ B such that |A′| ≥ γ|A| and |B′| ≥ γ|B|,

|d (A′, B′)− d(A,B)| < γ.

In other words, the fraction of edges between A′ and B′ is roughly the same as the fraction of
edges between A and B.
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2 Triangle Counting Lemma

In this example, we demonstrate the power of the notion of regularity of set pairs by proving the
following lemma. Informally, we show that three disjoint subsets A,B,C of vertices, each pair of
which is γ-regular, contain many triangles. A random graph would have η3|A||B||C| triangles, and
γ-regular set pairs give η3/16|A||B||C| triangles, which is only slightly worse within a constant factor
than a random graph.

Lemma 3 (triangle counting lemma). Let G = (V,E) be a graph. For all η (called the density),
there exists γ > 0 (called the regularity parameter) and δ > 0 (the fraction of triangles) such that if
A,B,C are disjoint subsets of V such that each pair is γ-regular with densities greater than η, then
G contains at least δ|A||B||C| distinct triangles with vertices in each of A,B,C.

Remark γ = γ4(η) := η/2 and δ = δ4(η) := (1 − η)η3/8 are functions of η independent of the
number of vertices or edges.

Proof Let A∗ be the vertices in A with at least |η − γ||B| neighbors in B and at least |η − γ||C|
neighbors in C. We claim that |A∗| ≥ (1 − 2γ)|A|. To see this, let A′ be the set of “bad” vertices
with respect to B, i.e., with fewer than |η − γ||B| neighbors in B, and let A′′ be the set of “bad”
vertices in C, i.e., with fewer than |η − γ||C| neighbors in C. Then

d (A′, B) <
|A′| · |η − γ| · |B|
|A′| · |B|

= |η − γ| = η − γ, d(A,B) = η.

It follows that the difference betweeen d(A′, B) and d(A,B) is greater than γ. Since B ≥ γ|B| and
since (A,B) is γ-regular, then |A′| < γ|A|. Similarly, |A′′| < γ|A|. Since A∗ = A \ (A′ ∪A′′), then

|A∗| ≥ |A| − |A′| − |A′′| ≥ |A| − 2γ|A| = (1− 2γ)|A|.

For each u ∈ A∗, let Bu be the set of neighbors of u in B, and let Cu be the set of neighbors of
u in C. Since γ = η/2, then η − γ ≥ γ. Hence,

|Bu| ≥ |η − γ||B| ≥ γ|B|,
|Cu| ≥ |η − γ||C| ≥ γ|C|.

Note that the number of edges between Bu and Cu equals the number of triangles involving u. See
Figure 1 for an illustration.

Since (B,C) is γ-regular, then d(Bu, Cu) ≥ η − γ. Hence,

e (Bu, Cu) ≥ (η − γ) |Bu| |Cu| ≥ (η − γ)(η − γ)|B|(η − γ)|C| = (η − γ)3|B||C|.

It follows that the total number of triangles is at least

|A∗| (η − γ)3|B||C| ≥ (1− 2γ)(η − γ)3|A||B||C| ≥ (1− η)
(η

2

)3
|A||B||C| = δ|A||B||C|.

This completes the proof.

3 Szemerédi’s Regularity Lemma

Informally, Szemerédi’s regularity lemma says that every graph can be partitioned into a constant
number of γ-regular pairs. We state Szemerédi’s regularity lemma without giving a proof due to
time constraints.
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Figure 1: The number of edges between Bu and Cu equals the number of triangles involving u.

Theorem 4 (Szemerédi’s regularity lemma). For all m > 0 and ε > 0, there exists T = T (m, ε)
such that for any graph G = (V,E) with |V | > T and any equi-partition A of V , there exists an
equipartition B into k sets which refines A such that m ≤ k ≤ T and at most ε

(
k
2

)
set pairs are not

ε-regular.

Historically, Szemerédi’s regularity lemma was first studied to prove a conjecture of Erdős and
Turán that sequences of integers have long artihmetic progressions.

A very rough idea for the proof of Szemerédi’s regularity lemma is as follows: We introduce the
notion of the variance of a partition of the vertices in a graph. Starting with an initial partition,
whenever a partition violates regularity, we refine it such that the variance grows significantly, i.e.,
by approximately εc for some constant c. Therefore, in fewer than 1/εc refinements, we have a good
partition.

How big is T? The above construction shows that T is in the order of

22
. .

.
2
}

height 1/εc.

It is amazing that this is a constant independent of the number of vertices, although this is very
large and not practical algorthmically.

4 Triangle-Freeness Testing

An application of Szemerédi’s regularity lemma is triangle-freeness testing in a graph:

Problem 5 (triangle-freeness testing). Let G be a graph (not necessarily tripartite) and ε > 0. If
G is triangle-free, then accept. If one needs to delete at least εn2 edges to make G triangle-free (i.e.,
G is ε-far from being triangle-free), then reject.

This model is interesting only in dense graphs. We give an algorithm for triangle-free testing in
Algorithm 1. We prove the following theorem:

Theorem 6. For all ε > 0, there exists δ > 0 such that any graph G = (V,E) ε-far from being

triangle-free contains at least δ
(|V |

3

)
distinct triangles.
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1 repeat O(1) times
2 pick v1, v2, v3 ∈ V
3 if v1, v2, v3 form a triangle then
4 reject

5 accept

Algorithm 1: An algorithm for triangle-free testing in a graph G = (V,E).

Sketch of Proof Apply Szemerédi’s regularity lemma to G, obtaining an equi-partition of V into
k sets, where 5/ε ≤ k ≤ T (i.e., εn/5 ≥ n/k ≥ n/T ). Let ε′ = min(ε/5, δ4(ε/5)). Then at most
ε′
(
k
2

)
pairs of sets in the equi-partition are not ε′-regular. Delete edges that are

(i) internal to the sets in the equi-partition;

(ii) between non-regular pairs of sets in the equi-partition;

(iii) between low-density (i.e., less than ε/5) pairs of sets in the equi-partition.

We can show that we have deleted fewer than εn2 edges, so the resulting graph G′ contains at least
one triangle. Moreover, any triangle in G′ satisfies the following:

(i) the three vertices forming the triangle are in three distinct sets in the equi-partition;

(ii) each pair of these three sets are regular;

(iii) the density between each pair of these three sets is not low.

Finally, applying the triangle counting lemma (i.e., Lemma 3) gives a lower bound on the number
of distinct triangles in G′ and hence G, showing that indeed many triangles remain.
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